

# Environmental Cracking Behavior of Submerged Arc-Welded Supermartensitic Stainless Steel Weldments

P. Bala Srinivasan, S.W. Sharkawy, and W. Dietzel

(Submitted 8 December 2003; in revised form 12 January 2004)

Supermartensitic stainless steel welds produced by submerged arc welding were assessed for their microstructure and properties. Slow strain rate tests conducted on these specimens revealed that both the parent material and the weld metals are susceptible to cracking under conditions of hydrogen (H) charging.

**Keywords** hardness, hydrogen cracking, slow strain rate test, supermartensitic stainless steel, welding

## 1. Introduction

The oil and gas industry employs a wide variety of materials ranging from American Petroleum Institute (API) grade carbon/low alloy steels to highly alloyed stainless steels, especially for the flow lines and offshore structures. The recently developed supermartensitic stainless steels (SMSS) are gaining popularity over the current materials used in aggressive environments due to their better weldability, better elevated temperature mechanical properties, and superior stress corrosion cracking resistance.<sup>[1,2]</sup> The stress corrosion cracking behavior of SMSS base materials in sweet/sour environments has been investigated,<sup>[3,4]</sup> and the performance of weldments produced with non-matching duplex stainless steel fillers have also been addressed.<sup>[5,6]</sup> Efforts are being made to understand the mechanical and corrosion behavior of SMSS weldments obtained with matching supermartensitic stainless steel consumables.<sup>[7]</sup> The current work addresses the tensile behavior of SMSS weldments in the presence of hydrogen under slow strain rate test conditions.

## 2. Experimental

The current investigation used two grades of SMSS materials with the chemical compositions given in Table 1. Butt

**P. Bala Srinivasan**, Department of Metallurgical Engineering, National Institute of Technology, Tiruchirappalli 620 015, India (Currently with GKSS-Forschungszentrum Geesthacht GmbH, Institute for Materials Research, D-21502 Geesthacht, Germany); **S.W. Sharkawy**, Department of Metallurgy, Nuclear Research Center, Atomic Energy Authority, Cairo 13759, Egypt; and **W. Dietzel**, GKSS-Forschungszentrum Geesthacht GmbH, Institute for Materials Research D-21502 Geesthacht, Germany. Contact e-mail: pbs@nitt.edu.

joint welds were produced with plates of SMSS of 20 mm in thickness by submerged arc welding (SAW) under optimized welding conditions using a supermartensitic stainless steel filler wire. The root pass was laid down with plasma arc welding, and the subsequent filling/capping passes were made with SAW, on a double V groove joint. The weldments were subjected to a post-weld heat treatment at  $630 \pm 10$  °C for 30 min for relieving the stresses and also to accomplish tempering. For ease of referencing, the high grade and medium grade SMSS weldments are designated as HW and MW, respectively.

Metallographic specimens were prepared and etched in 50 ml HCl + 5 ml HNO<sub>3</sub> + 50 ml H<sub>2</sub>O solution. Slow strain rate tensile tests (SSRTs) were performed using cylindrical specimens of dimensions, as shown in Fig. 1, to assess the tensile behavior in air and under conditions of hydrogen (H) charging. Specimens were polarized at a potential of -1200 mV versus Ag/AgCl in 0.1 M NaOH solution to provide hydrogen charging conditions, and the specimens were kept at a small pre-load of 0.5 KN (~25 MPa) for 24 h prior to start of tests. Reference tests in air and all SSRTs were performed at a strain rate of  $10^{-6}$  s<sup>-1</sup>. All the tests were evaluated following the ISO standard 7539-Part 7 "Slow Strain Rate Tests,"<sup>[8]</sup> and the fracture surfaces of the SSRT specimens were examined in a scanning electron microscope.

## 3. Results and Discussion

The microstructure of the high and medium grade SMSS base materials (Fig. 2a and 2b) reveal tempered low-carbon martensite. Figure 3(a) shows an overview of the HW weldment comprising the weld metal, the heat affected zone, and the base material. Figure 2(b) shows that the coarse and fine-grained heat affected zones in this weldment had a tempered martensitic structure. The MW weldment also had similar features. Figure 4(a) and (b) indicate that the weld metal region of weldments HW and MW also had a fine tempered martensitic structure.

**Table 1** Chemical Composition of SMSS Base Materials and Filler Wires (wt.%)

| Material             | C     | Mn    | Si    | Cr     | Ni    | Mo    | Cu    | N     |
|----------------------|-------|-------|-------|--------|-------|-------|-------|-------|
| High grade           | 0.006 | 1.870 | 0.294 | 11.650 | 6.498 | 2.330 | 0.475 | 0.009 |
| Medium grade         | 0.014 | 1.030 | 0.380 | 11.650 | 4.730 | 1.420 | 0.250 | 0.011 |
| Solid wire electrode | 0.013 | 0.670 | 0.500 | 12.370 | 6.370 | 2.650 | ...   | 0.002 |

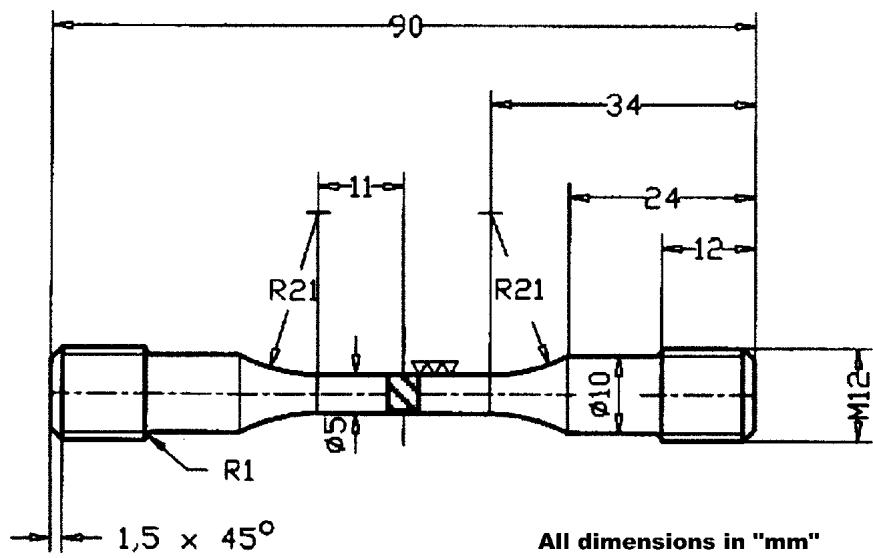



Fig. 1 SSRT test specimen configuration

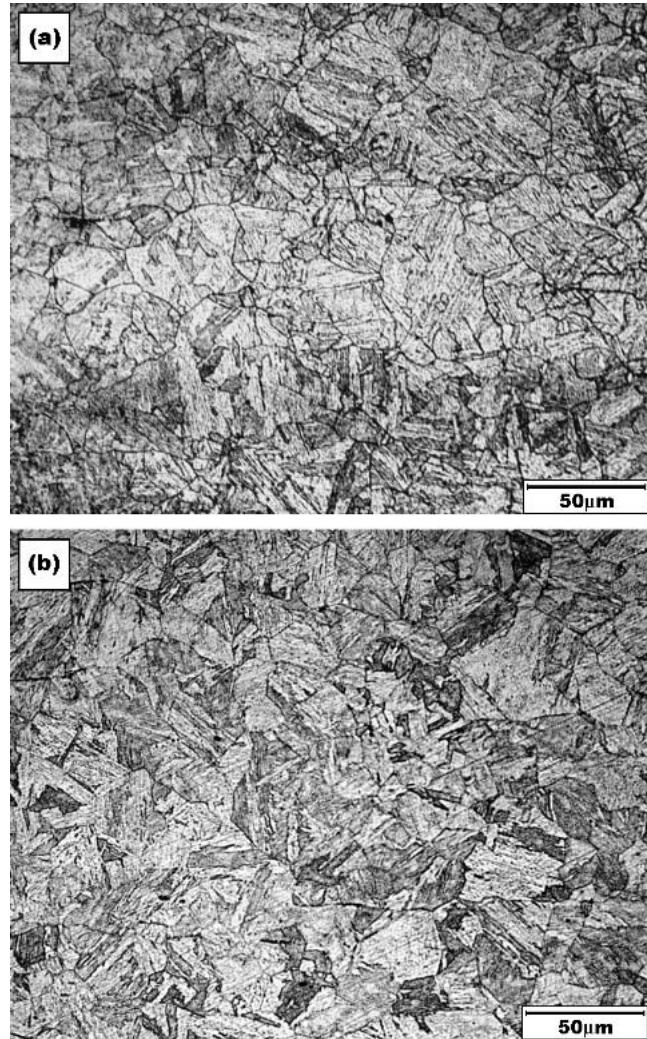



Fig. 2 Microstructure of SMSS base materials: (a) high grade, (b) medium grade

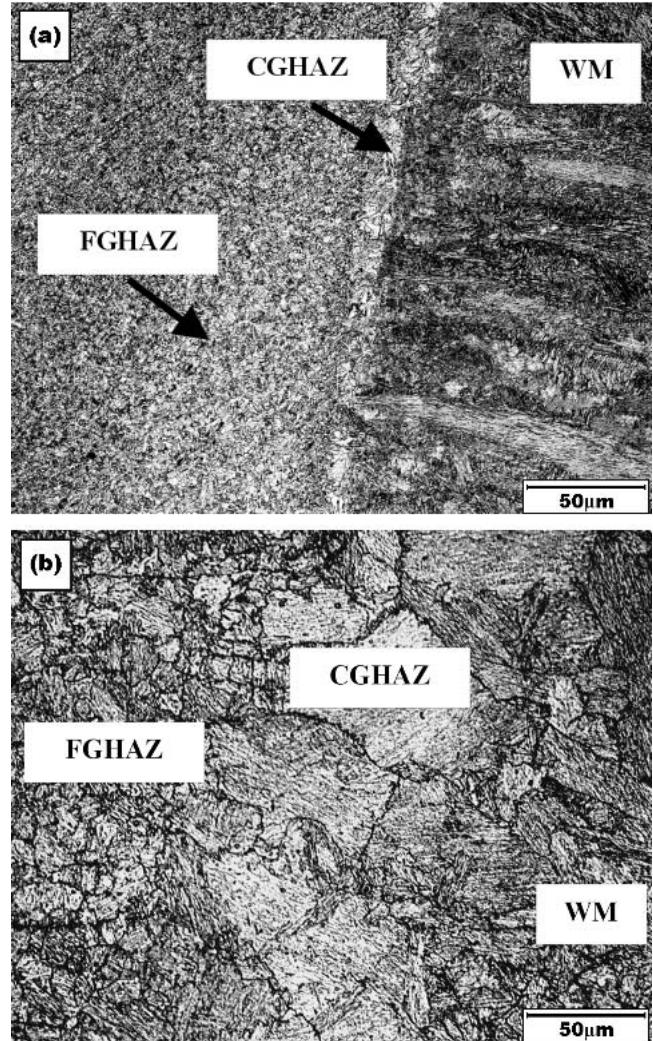
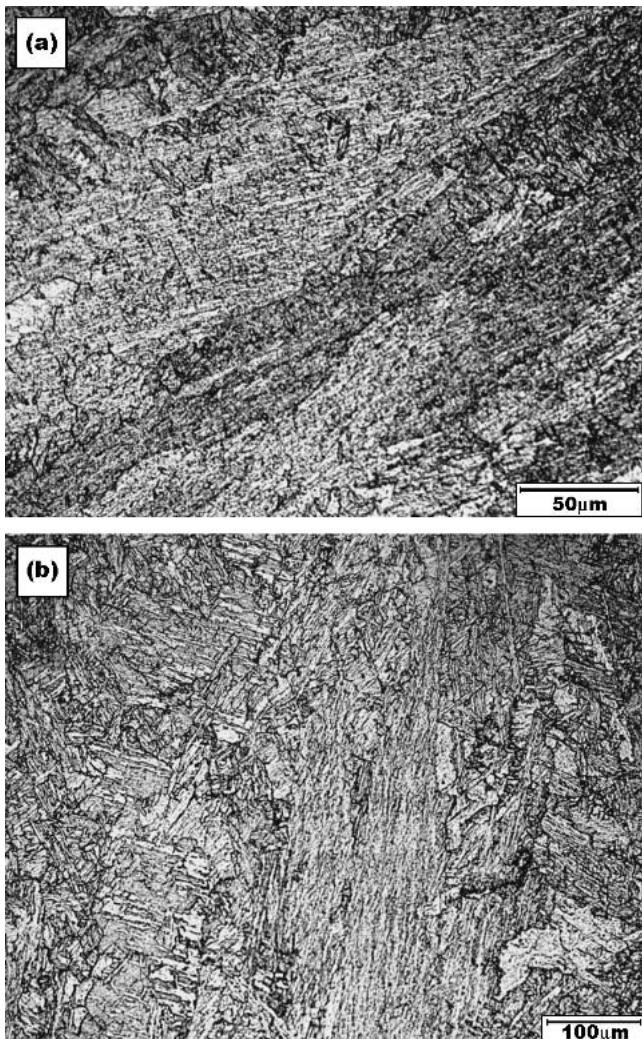
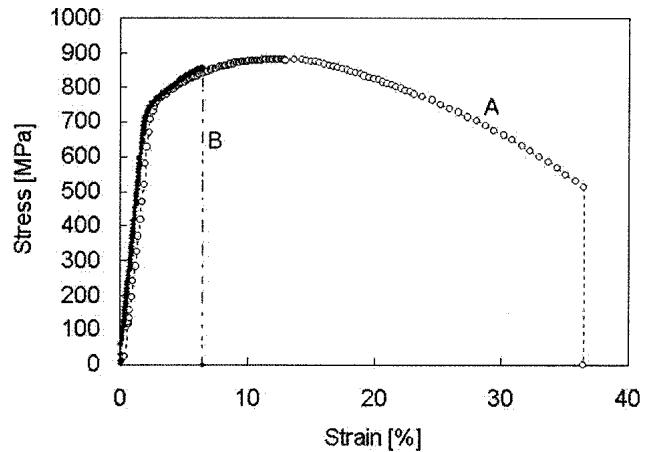




Fig. 3 Microstructures of the composite zone of weldment HW at different magnifications. WM, weld metal; FGHAZ, fine-grained heat affected zone; CGHAZ, coarse-grained heat-affected zone




**Fig. 4** Microstructural features of the weld metals: (a) high alloy, (b) medium alloy

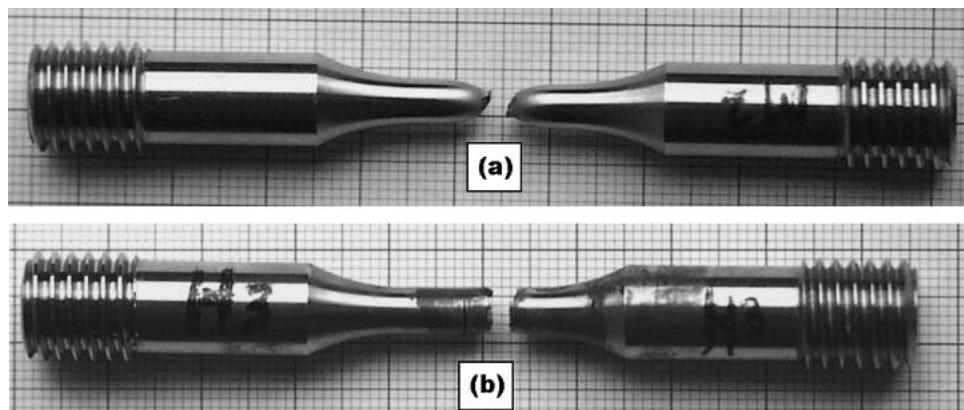
**Table 2** Tensile Properties of the SMSS Samples Tested in Air and Under Conditions of Hydrogen Charging

| Sample                     | Test Medium    | Reduction in Area, % | Tensile Strength, MPa |
|----------------------------|----------------|----------------------|-----------------------|
| High-grade base material   | Air            | 74.9                 | 921                   |
| High-grade base material   | 0.1 M NaOH (a) | 4.5                  | 901                   |
| Medium-grade base material | Air            | 73.5                 | 883                   |
| Medium-grade base material | 0.1 M NaOH (a) | 3.6                  | 778                   |
| Weldment HW                | Air            | 66.8                 | 925                   |
| Weldment HW                | 0.1 M NaOH (a) | 7.3                  | 795                   |
| Weldment MW                | Air            | 72.8                 | 890                   |
| Weldment MW                | 0.1 M NaOH (a) | 8.9                  | 760                   |

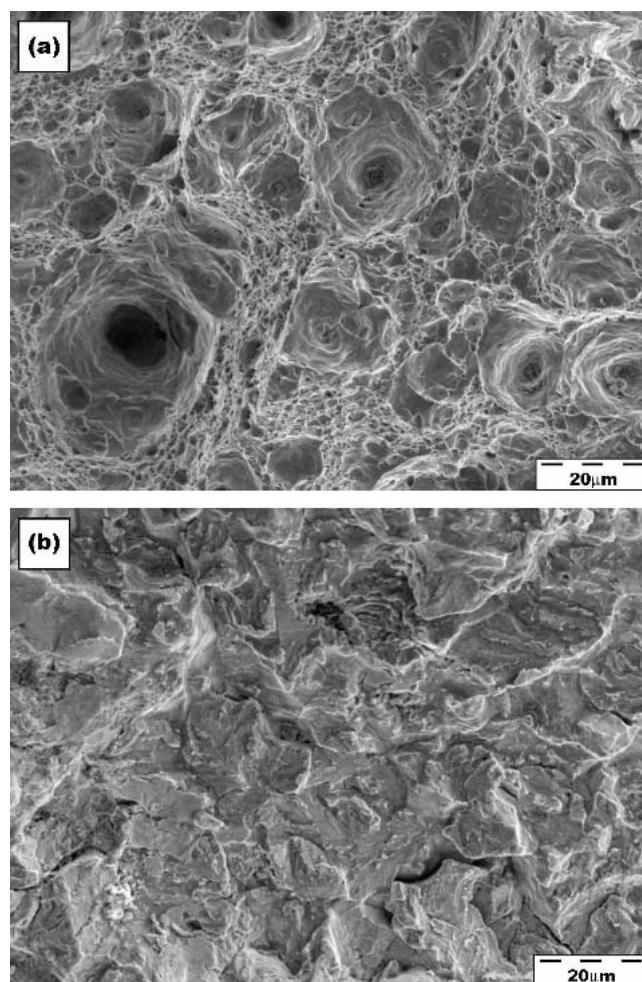
(a) Potentiostatic at  $-1200$  mV versus Ag-AgCl

The macro hardness measurements on the weldments revealed that the weld metals had higher hardnesses than their base material counterparts. The hardness of the weld metals (HW and MW) were found to be around  $315\text{-}325$  HV<sub>20</sub> in



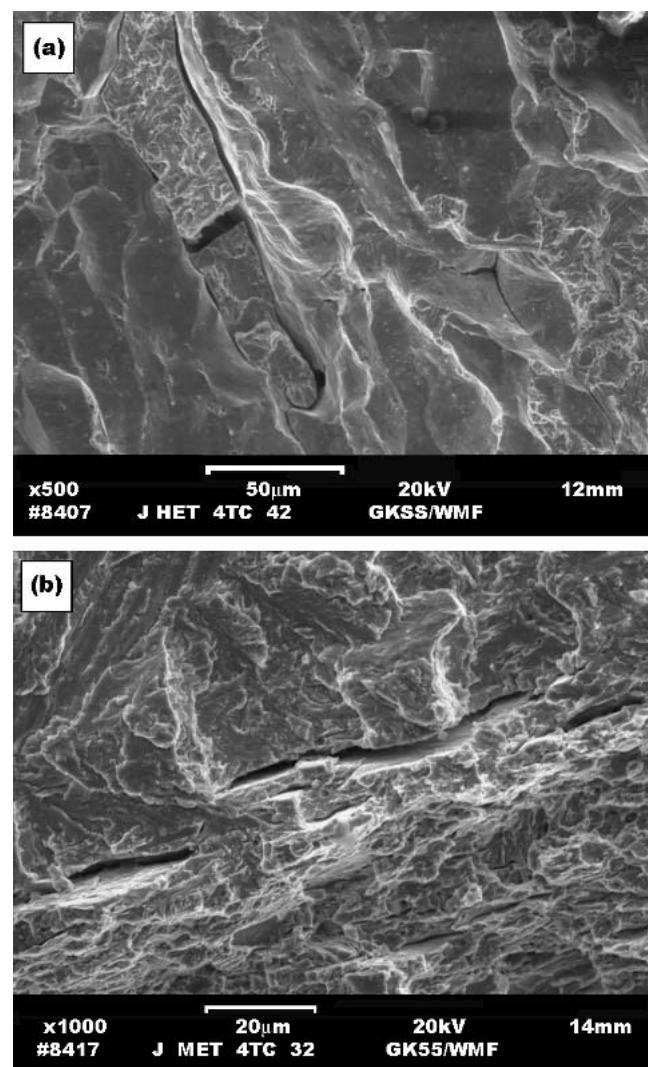

**Fig. 5** Stress-strain behavior of medium grade SMSS base material in air and under conditions of H charging (SSRT tests): (a) in air, (b) under conditions of H charging

contrast to  $275\text{-}290$  HV<sub>20</sub> in the base material counterparts, indicating that the welds are overmatched. The heat affected zones also had registered hardness values around  $315\text{-}325$  HV<sub>20</sub>, which clearly illustrates the beneficial effect of post weld heat treatment in controlling the hardness in the weldment.


Representative stress-strain plots of the medium-grade SMSS base metal SSRT tested in air and under conditions of hydrogen charging are shown in Fig. 5. The SSRT test data of all the specimens are presented in Table 2. Under conditions of H charging, both the high-grade and medium-grade SMSS base metals showed brittle fracture with low ductility levels. Macro photographs of the high-grade base material tested in air and under conditions of H charging presented in Fig. 6(a) and (b), respectively, reveal the differences in fracture behavior. Both the high and medium-grade base material specimens SSRT tested in air had a dimpled fracture surface, as shown in Fig. 7(a), while the specimens tested under H charging conditions exhibited a mixed mode of transgranular/intergranular fracture, characteristic of environment-assisted cracking (Fig. 7b).

The weldment specimens failed in air in the low strength region (the base metal) and exhibited a ductile fracture mode. The percentage reduction in area of the two-weldment specimens was marginally lower than that of the base materials, which could plausibly be due to the different strain levels experienced in the gauge section in the composite nature of the weldment (weld metal + heat affected zone + base material). This was consistent with an earlier investigation, which found that the ultimate tensile strength of an all-weld metal SMSS specimen was higher than the SMSS base material, with an overmatch of around 5-7%.<sup>[9]</sup>

In contrast, the weldment specimens tested under conditions of H charging failed in the middle of weld metal, with a characteristic flat fracture. Testing under H charging conditions was associated with a considerable drop in ductility (assessed in terms of percentage reduction in area) and furthermore these specimens had a lower ultimate strength, and fractured at the same maximum stress level in a brittle fashion. The fracto-




**Fig. 6** Macro photos showing the features of the fractured SMSS base material tensile samples after SSRT tests: (a) in air, (b) under conditions of H charging



**Fig. 7** Fractographs of SSRT tested high-grade SMSS base material: (a) in air, (b) under conditions of hydrogen charging

graphs of the weldment specimens HW and MW, shown in Fig. 8(a) and (b), respectively, revealed a mixed mode, inter-transgranular fracture. It is well known that high-strength materials used in sour/sweet environments may experience either



**Fig. 8** Fractographs of the SSRT tested specimens under conditions of hydrogen charging: (a) weldment HW, (b) weldment MW

dissolution-assisted or H-induced cracking depending on the service conditions. The dependence of H-induced cracking has

also been reported to be a function of the local pH and also the potential of the H-generating environment, especially in wet H<sub>2</sub>S environments.<sup>[10]</sup> Cracking under such conditions has been observed to be associated with the development of pits, which then become crack-initiation sites, with the adsorption of hydrogen at the crack tips, leading to crack propagation.

In this work, corrosion was eliminated completely by the selection of the appropriate test condition, and only the effect of H on the cracking behavior was studied. It has been stated that H-assisted cracking is feasible only when the H concentration in the material exceeds the threshold level.<sup>[10]</sup> The experimental conditions for H charging were chosen to simulate the over-protection condition of cathodic protection applied to these materials in oil and gas piping application. The applied potential of -1200 mV versus Ag/AgCl was sufficiently high to generate H, exceeding the threshold limit. The cracking could be explained by the decohesion theory, which suggests the migration of dissolved hydrogen into triaxially stressed regions, causing embrittlement of the lattice by lowering the cohesive strength between the metal atoms.

Though it has been stated in a recent work by Boellinghaus et al.,<sup>[11]</sup> that the H degradation markedly influences the ductility rather than strength in wet hydrogen sulphide environments, in this work there was a distinct drop in strength level, especially for the weldment specimens. It is well known that H damage is generally higher in regions of higher hardness and susceptible microstructures. Hence is it quite probable that in this case the higher hardness of the weld metals would have influenced the cracking behavior. However, it has been documented that the H diffusion coefficient in supermartensitic stainless steels differed up to three times with small variations in chemical compositions,<sup>[12]</sup> indicating that the cracking behavior is dependant on chemistry of the alloy, too. No quantitative analysis of H level was done to correlate that with the microstructure in this work. However, the above observations suggest that both the SMSS base materials and their over-matching weld metal counterparts are susceptible to cracking under conditions of H generation/charging even in the absence of aggressive corrosive environment.

## 4. Conclusions

1. Joining of supermartensitic stainless steels by SAW using matching consumable results in overmatched weld joints.
2. Though the weld metals are overmatched, they are equally susceptible to H induced stress cracking in hostile environments.

## Acknowledgments

This work is part of the EC Growth Project – JOTSUP (GRD1-1999-10278). The authors wish to thank Dr. Mustafa

Koşak, Coordinator of the JOTSUP project for providing the weldment samples for this investigation. Of the authors, P.B.S., thanks the Department of Science and Technology, India for awarding BOYSCAST fellowship and S.W.S. thanks the Internationales Büro des BMBF, DLR, Germany for the financial support. The authors also express their sincere thanks and appreciation to Dr. Richard Segar for the useful technical discussions and Dr. Ibrahim Taha Hassan for the technical support.

## References

1. T.G. Gooch: "Heat-Treatment of Welded 13%Cr-4%Ni Martensitic Stainless Steels for Sour Service," *Welding J.*, 1995, 74 (7), pp. 213s-23s.
2. H. Asahi, T. Hara, and M. Sugiyama: "Corrosion Performance of Modified 13%Cr OCTG" in *Proceedings of the NACE Corrosion/96*, NACE International, Paper 61, Houston, TX, 1996.
3. L. Scoppio, M. Barteri, and G. Cumino: "Sulphide Stress Cracking Resistance of Supermartensitic Stainless Steels for OCTG" in *Proceedings of the NACE Corrosion/97*, NACE International, Paper 23, Houston, TX, 1997.
4. T. Boellinghaus, H. Hoffmeister, and S. Dietrich: "Slow Strain Rate Testing of Low Carbon Martensitic Stainless Steels" in *Proceedings of Eurocorr 97*, European Federation of Corrosion, Paper 28, Trondheim, Norway, 1997.
5. Y. Miyata, M. Kimura, and T. Koseki: "Martensitic Stainless Steel Seamless Line Pipe With Superior Weldability and CO<sub>2</sub> Corrosion Resistance" in *Proceedings of NACE Corrosion/97*, NACE International, Paper 19, Houston, TX, 1997.
6. G. Cumino, A. Poli, T. Ono, S. Hashizume, K. Yamazaki, and L. Scoppio: "Supermartensitic 13%Cr Large Diameter Seamless Pipes – Mechanical, Corrosion and Weldability Properties," *Latin Am. Appl. Res.*, 2002, 32(3), pp. 215-19
7. Development of Advanced Joining Technologies for Supermartensitic Stainless Line Pipes – JOTSUP, Project No: GRD1-1999-10278, Contract No: G5RD-CT-1999-00053-JOTSUP, GKSS/Forschungszentrum, Institute for Materials Research, Geesthacht, Germany, 1999-2003.
8. International Standard ISO 7539, Corrosion of metals and alloys – Stress corrosion testing; Part 7: Slow Strain Rate Stress Corrosion Tests, International Organization for Standardization, Geneva, Switzerland, 1989.
9. M. Koçak, R. Segar, S. Riekehr, V. Ventzke, J. dos Santos, J. Heather, W. Schaefer, C. Jochum, and H. Heuse: "Fracture Behavior Evaluation of 13%Cr Stainless Steels Welded with SAW Process using CTOD and Wide Plate Tests" in *Proceedings of the Supermartensitic Stainless Steels 2002*, The Belgian Welding Institute, Brussels, Belgium, October 3-4, 2002.
10. T. Hara and H. Asahi: "Conditions Under Which Cracks Occur in Modified 13% Chromium Steel in Wet Hydrogen Sulfide Environments," *Corrosion*, 2000, 56(5), pp. 533-42.
11. T. Boellinghaus, H. Hoffmeister, and T. Tanski: "Wet H<sub>2</sub>S Performance of As-Delivered and Quenched Modified Martensitic Stainless Steel Determined by SSRT" in *Proceedings of the NACE Corrosion/99*, NACE International, Paper 588, Houston, TX, 1999.
12. D.M. Seeger, T. Boellinghaus, and H. Hoffmeister: "Hydrogen Permeation in Supermartensitic Stainless Steels" in *2nd International Conference on Environmental Degradation of Engineering Materials*, Bordeaux, France, June 29-July 2, 2003 CD-ROM ISBN 1-904350-07-0.